- HÖKELEK, T., KILIÇ, E. & TÜZÜN, C. (1991). Acta Cryst. C47, 373-376.
- HÖKELEK, T., WATKIN, D. J., KILIC, E. & TÜZÜN, C. (1990). Acta Cryst. C46, 1027-1029.
- JAN, G. (1980). German Patent No. 2,939,259.
- LEARY, J. A., LAFLEUR, A. L., LIBER, H. L. & BLEMANN, K. (1983). Anal. Chem. 55, 758-761.

Acta Cryst. (1991). C47, 373-376

Structural Investigations of Benzolclcinnoline Derivatives. II. Structures of 2-Pyrrolidinobenzo[c]cinnoline and 4-Pyrrolidinobenzo[c]cinnoline

BY TUNCER HÖKELEK*

Department of Physics, Hacettepe University, 06532 Beytepe, Ankara, Turkey

AND EMINE KILIC AND CELAL TÜZÜN

Department of Chemistry, Ankara University, Tandoğan, Ankara, Turkey

(Received 15 January 1990; accepted 30 April 1990)

Abstract. (1) $C_{16}H_{15}N_3$, $M_r = 249.32$, monoclinic, $P2_1/c$, a = 12.325 (2), b = 12.579 (2), c = 8.710 (2) Å, $\beta = 106.41 (1)^{\circ}, V = 1295.3 (2) \text{ Å}^3, Z = 4, D_m = 1.26, D_x = 1.278 \text{ g cm}^{-3}, \lambda(\text{Cu } K\alpha) = 1.54180 \text{ Å}, \mu = 1.54180 \text{ Å}, \lambda(\text{Cu } K\alpha) =$ 5.726 cm^{-1} , F(000) = 528, T = 293 K, R = 0.056 for1817 observed reflections $[I \ge 3\sigma(I)]$. (2) C₁₆H₁₅N₃, $M_r = 249.32$, orthorhombic, $P2_12_12_1$, a = 8.180 (1), b = 11.771 (2), c = 13.430 (2) Å, V = 1293.1 (2) Å³, Z = 4, $D_m = 1.27$, $D_x = 1.281$ g cm⁻³, λ (Cu K α) = 1.54180 Å, $\mu = 5.734$ cm⁻¹, F(000) = 528, T = 293 K, R = 0.039 for 1253 observed reflections $|I| \ge 1$ $3\sigma(I)$]. The rings in the benzo[c]cinnoline skeleton are close to planar in (1) with dihedral angles of $0.27(7) - 1.25(6)^{\circ}$ compared to angles of 2.1(2)- $4.95(7)^{\circ}$ in (2). The pyrrolidino ring in (1) is close to planar with a maximum deviation from the leastsquares plane of 0.042(3) Å. In (2), the pyrrolidino group adopts a puckered conformation with distances between -0.201 (2) and 0.507 (2) Å from the least-squares plane.

Introduction. Benzo[c]cinnoline and some of its derivatives can have mutagenic (Leary, Lafleur, Liber & Blemann, 1983), antirheumatic (Matter, 1957; Erlenmeyer, 1958) and carcinogenic (Ashby, Styles & Paton, 1980) physiological activities. They have also been used as bleaching catalysts in the processing of photographic silver-dye bleach materials (Jan, 1980). The structures of benzo[c]cinnoline (van der Meer, 1972), 1-morpholinobenzo[c]cinnoline (Hökelek, Watkin, Kılıç & Tüzün, 1990) and 1- and 3-piperidinobenzo[c]cinnolines (Hökelek, Kılıç & Tüzün, 1991) have been reported previously. The structure determinations of the title compounds were undertaken in order to study the effects of changing the positions of the substituents.

Experimental. 2-Bromobenzo[c]cinnoline was synthesized from 2-aminobenzo[c]cinnoline by the methods described by Holt & Oakland (1966) while 4bromobenzo[c]cinnoline was isolated from a mixture obtained by bromination of benzo[c]cinnoline (Barton & Lapham, 1979). (1) and (2) were then obtained by mixing 1 mmol of the corresponding bromobenzo[c]cinnoline with 10 ml pyrrolidine and refluxing for 12 and 8 h, respectively. The crude products were recrystallized first from ethanol/water and then from ethanol (1), and from ethanol and dichloromethane/ethanol (2). Yellow prismatic crystals of (1) and yellow rod-shaped crystals of (2) were obtained within 2 days. Experimental data, the method used to solve structures and other relevant information are given in Table 1. Non-H atoms were included with anisotropic displacement parameters. Difference syntheses showed the location of some H atoms which were refined isotropically, the rest were placed in calculated positions (C—H = 1.0 Å). A riding model was used in the refinement of these H positions. Isotropic displacement parameters of H atoms, which cannot be obtained from difference syntheses, are taken as 1.3 times the corresponding displacement parameters of the connecting non-H

MATTER, M. (1957). US Patent No. 2.778.829.

MEER, H. VAN DER (1972). Acta Cryst. B28, 367-370.

MULLIKEN, R. S. (1955). J. Chem. Phys. 23, 1833-1840.

- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany. WATKIN, D. J., CARRUTHERS, J. R. & BETTERIDGE, D. W. (1985).
- CRYSTALS. Program for crystal structure solution. Univ. of Oxford, England.

HOFFMAN, R. (1963). J. Chem. Phys. 39, 1397-1412.

^{*} To whom correspondence should be addressed.

Table 1. Experimental data and structure-refinement parameters

	(1)	(2)			
Method of measuring D_{m}	Flotation in aqueous KI				
Crystal shape and size	Prismatic Rod-shaped				
(mm)	$0.2 \times 0.3 \times 0.6$	$0.5 \times 0.5 \times 0.4$			
Data-collection technique.	ω -2 θ scan, four-	circle diffractometer			
diffractometer	(Enraf-No	onius CAD-4)			
Number and θ range (°)	25 reflections with				
of reflections for	$11 \le 2\theta \le 31$	$12 \le 2\theta \le 36$			
measuring lattice					
parameters					
Absorption correction	Semi-empirical (North Phillips &				
applied (max, and min.	Mathews 1968)				
values)	1.25 1.16 1.28 1.17				
$Max (sin \theta/\lambda) (Å^{-1})$,	0.617			
Range of h k and l	-1 < h < 15	$-1 \le h \le 10$.			
lange of it, it and t	$-1 \le k \le 15$.	$-1 \leq k \leq 14$			
	$-10 \le l \le 10$	$-1 \le l \le 16$			
Standard reflections and	113. 266.	301, T15,			
their intensity variation	$3\overline{6}6. \pm 1$	$004. \pm 1$			
throughout experiment	,	, =-			
(%)					
Number of reflections	3429	2076			
measured	2.22				
Number of unique	2546	1479			
reflections					
Number of unobserved	729	226			
reflections					
Number of reflections used	1817	1253			
in the refinement					
Criterion for recognizing	$I \leq 3\sigma(I)$				
unobserved reflections					
Method used to	Direct methods (see below)				
solve structure					
Use of F or F^2 magnitudes		F			
in least-squares					
refinement					
Parameters refined	212	172			
Values of R, wR	0.056, 0.071	0.039, 0.046			
Method used to calculate w	 Chebychev (Carru 	thers & Watkin, 1979)			
Final residual electron	+0.67, -0.67	+0.5, -0.5			
densities ($e A^{-3}$) for					
max. and min. peaks					
Max. (Δ/σ)	0.054	0.002			
Source of atomic	International Tables for X-ray				
scattering factors	Crystallography (1974, Vol. IV)				
Computer programs	SHELXS86 (Sheldrick, 1986),				
used CRYSTALS (Watkins, Carruthers					
	Betteridge, 1985), SNOOPI (Davies,				
]	(983)			

Table 2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^4)$ with e.s.d.'s in parentheses

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}			
2-Pyrrolidinobenzo[c]cinnoline (1)							
CI	8400 (2)	1890 (2)	2487 (3)	435 (11)			
C2	8228 (2)	1230 (2)	3689 (3)	477 (12)			
C3	7272 (2)	542 (2)	3317 (3)	586 (15)			
C4	6563 (2)	491 (2)	1801 (3)	602 (15)			
C5	6758 (2)	1123 (2)	578 (3)	483 (12)			
N6	6000 (2)	1006 (2)	-922 (3)	569 (12)			
N7	6104 (2)	1575 (2)	-2116 (2)	581 (12)			
C8	6969 (2)	2314 (2)	- 1877 (3)	484 (12)			
C9	7016 (3)	2907 (2)	- 3228 (3)	602 (16)			
C10	7838 (3)	3640 (2)	- 3115 (3)	643 (17)			
C11	8656 (2)	3823 (2)	- 1638 (3)	600 (14)			
C12	8628 (2)	3249 (2)	- 308 (3)	477 (12)			
C13	7786 (2)	2481 (2)	- 389 (2)	409 (11)			
C14	7673 (2)	1842 (2)	928 (2)	420 (11)			
N15	8959 (2)	1229 (2)	5191 (2)	522 (11)			
C16	8856 (3)	531 (2)	6484 (3)	592 (16)			
C17	9868 (3)	809 (3)	7860 (3)	791 (22)			
C18	10558 (3)	1579 (3)	7327 (3)	788 (22)			
C19	9948 (2)	1909 (2)	5652 (3)	521 (13)			
4 Durrelidinghange Jalainnaling (2)							
-1 yn c		5076 (2)	7001 (2)	532 (12)			
C	1140 (3)	5970 (2) 6590 (2)	8000 (2)	505 (12)			
C_2	-273(3)	6509 (2)	7204 (2)	548 (13)			
	-1300(3)	5052 (2)	6418 (1)	456 (0)			
C4 C5	- 1377 (3)	5260 (2)	6321 (1)	400 (9)			
NG	147(2)	4538 (1)	5507 (1)	403 (0)			
NO N7	147(2) 1301(2)	3880 (2)	5358 (1)	507 (9)			
	2704(3)	3907 (2)	6009 (1)	437 (9)			
$\tilde{\mathbf{C}}$	4028 (3)	3187 (2)	5775 (2)	541 (11)			
Cin	5390 (3)	3186(2)	6366 (2)	636 (14)			
	5450 (3)	3883 (3)	7209 (2)	645 (14)			
C12	4148(3)	4568 (2)	7467 (2)	555 (11)			
C13	2744 (3)	4598 (2)	6860 (1)	428 (9)			
C14	1329 (3)	5298 (2)	7050 (1)	426 (9)			
NIS	-2578(2)	6012 (2)	5722 (1)	493 (9)			
C16	-2489(3)	5641 (2)	4672 (2)	554 (11)			
C17	-3807(3)	6348 (2)	4156 (2)	618 (13)			
C18	-5079(3)	6500 (2)	4964 (2)	648 (14)			
C19	-4045(3)	6710 (2)	5886 (2)	576 (12)			
0.7	1010 (0)						

atoms in (1), and as $U = 0.05 \text{ Å}^2$ in (2). Initially a unit-weighting scheme was used, but in the final stages of the refinement the weights were assigned using the method described by Carruthers & Watkin (1979) as incorporated into the *CRYSTALS* package of programs (Watkin, Carruthers & Betteridge, 1985).

Discussion. The final coordinates and equivalent isotropic displacement parameters for (1) and (2) are given in Table 2.* The molecular structures with the atom-numbering schemes are shown in Fig. 1. Bond lengths and angles are given in Table 3, and molecular packing diagrams in Fig. 2.

The benzo[c]cinnoline skeletons in (1) and (2) consist of almost planar rings. The maximum distances from the least-squares planes are for (1) 0.003 (3), 0.007 (2) and 0.018 (2) Å for rings α (C8, C9, C10, C11, C12, C13), β (C5, N6, N7, C8, C13, C14) and γ (C1, C2, C3, C4, C5, C14), respectively. The corresponding distances in (2) are 0.023 (2), 0.027 (2) and 0.023 (3) Å, indicating greater deviations from planarity for (2). The benzo[c]cinnoline skeleton in (1) is also more planar than (2), which can be seen from the dihedral angles [for compound (2) in parentheses] $\alpha - \beta = 0.29$ (7) [2.1 (2)], $\alpha - \gamma = 1.32$ (6) [4.95 (7)] and $\beta - \gamma = 1.25$ (6)° [4.02 (6)°]. The dihedral angles depend on the steric interaction with the substituents. The interaction is greatest with the substituents in the position 1 as for 1-piperidino-

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53227 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 3. Bond lengths (Å) and angles (°) with e.s.d.'s in parentheses

	(1)	(2)		(1)	(2)
C1-C2	1.398 (3)	1.374 (3)	C8-C13	1.414(3)	1.404 (3)
C1-C14	1.402(3)	1.402(3)	C9C10	1.353 (4)	1.368 (4)
C2-C3	1.424(3)	1.384(3)	C10-C11	1.412 (4)	1·399 (4)
C2-N15	1.363 (3)		C11C12	1.373 (3)	1.380 (3)
C3—C4	1.363 (3)	1.411(3)	C12-C13	1.406(3)	1.410(3)
C4—C5	1.403 (4)	1.446(3)	C13C14	1.439 (3)	1.443 (3)
C4N15		1.358(3)	N15-C16	1.462 (3)	1.478 (2)
C5-C14	1.410(3)	1.419(3)	N15-C19	1.450(3)	1.471 (3)
C5—N6	1.382 (3)	1.386(2)	C16-C17	1.507 (4)	1.529 (3)
N6—N7	1.298 (3)	1.294 (2)	C17C18	1.448 (5)	1.513 (4)
N7-C8	1.386(3)	1.385(3)	C18-C19	1.499(3)	1.521 (4)
C8—C9	1.408 (4)	1.411(3)			
C2C1C14	120.6 (2)	118.4(2)	C10C11C12	120.1 (3)	121.3 (2)
C1-C2-C3	118.8(3)	122.9(2)	CIICI2CI3	120.9(2)	119.8 (2)
C1-C2-N15	121.3 (2)		C8-C13-C12	118.2(2)	118.4(2)
C3-C2-N15	119.9 (2)		C8-C13-C14	116.3(2)	117.1 (2)
C2-C3-C4	120.8 (2)	121.6(2)	C12-C13-C14	125.5(2)	124.4 (2)
C3-C4-C5	120.5 (2)	115.9(2)	C1C14C5	119.4 (2)	120.3 (2)
C3-C4-N15		120.0(2)	CI-CI4-CI3	124.7 (2)	123.7 (2)
C5-C4-N15		124.2(2)	C5-C14-C13	116.0(2)	116-1 (2)
C4-C5-C14	119.8(2)	120.9(2)	C2N15C16	124.2(2)	
C4-C5-N6	116.3 (2)	116.8(2)	C2-N15-C19	122.8(2)	
N6-C5-C14	123.9(2)	122.2(2)	C4-N15-C16		127.3 (2)
C5-N6-N7	120.3 (2)	121.5 (2)	C4-N15-C19		121.1 (2)
N6—N7—C8	119.7 (2)	119.9(2)	C16-N15-C19	113.0(2)	110.4 (2)
N7-C8-C9	116.2(2)	116.2(2)	N15-C16-C17	103.9(2)	103.7 (2)
N7-C8-C13	123.7 (2)	123.0 (2)	C16-C17-C18	109.3 (2)	102.9 (2)
C9-C8-C13	120.1 (2)	120.8 (2)	C17-C18-C19	108.5 (3)	102.8 (2)
C8-C9-C10	120.4 (2)	119·7 (2)	C18-C19-N15	104 9 (2)	103-9 (2)
C9-C10-C11	120.3 (3)	119.9 (2)			

Fig. 1. SNOOPI (Davies, 1983) drawings of (a) (1) and (b) (2) with the atom-numbering schemes. The thermal ellipsoids are drawn at the 50% probability level.

benzo[*c*]cinnoline where, for example, the angle $\alpha - \gamma = 14.4 (1)^\circ$, compared with the corresponding angle in 3-piperidinobenzo[*c*]cinnoline (Hökelek, Kılıç & Tüzün, 1991), $\alpha - \gamma = 3.4 (1)$ and $1.8 (1)^\circ$ for the two independent molecules.

The pyrrolidino group is quite planar in (1) but less so in (2). In (1) the displacements of the atoms in the pyrrolidino group from the least-squares plane are 0.009 (2), 0.005 (3), -0.034 (3), 0.042 (3) and -0.020 (3) Å for N15, C16, C17, C18 and C19, respectively. For (2) the corresponding distances are -0.145 (2), 0.045 (2), 0.507 (2), -0.201 (2) and

Fig. 2. The overall packing diagrams of (a) (1) and (b) (2).

-0.080 (2) Å. This difference in planarity also results in generally smaller angles within the pyrrolidino ring in (2) compared with (1). The dihedral angle between the pyrrolidino group and ring γ in the benzo[c]cinnoline skeleton is 5.43 (5) in (1) and 6.80 (5)° in (2).

Back donation of the lone pair of electrons of the N15 atom affects the bond lengths and angles of ring γ in the benzo[c]cinnoline skeleton. The hybridization of N15 is close to $sp^2 + p$ which results in short bonds C2—N15 = 1.363 (3) in (1) and C4—N15 = 1.358 (3) Å in (2). In 1- and 3-piperidinobenzo[c]cinnoline (Hökelck, Kılıç & Tüzün, 1991) the corresponding distances are C1—N15 = 1.382 (5) (molecule A) and 1.388 (5) Å (molecule B) which might be ascribed to a hybridization intermediate between sp^3 and $sp^2 + p$. The type and position of the substituent determine the shape of the benzo[c]cinnoline skeleton as well as the overall shape of the molecule.

The authors are grateful to the Scientific and Technical Research Council of Turkey (TÜBİTAK) for financial support, and to Drs C. K. Prout, D. J. Watkin and A. K. Cheetham of the Chemical Crystallography Laboratory, University of Oxford, England, for provision of laboratory and computer facilities.

References

- ASHBY, J., STYLES, J. A. & PATON, D. (1980). Carcinogenesis (NY), 1(1), 1–7.
- BARTON, J. W. & LAPHAM, D. J. (1979). J. Chem. Soc. Perkin Trans. pp. 1503-1505.
- CARRUTHERS, J. R. & WATKIN, D. J. (1979). Acta Cryst. A35, 698-699.
- DAVIES, K. (1983). SNOOPI. Program for drawing crystal and molecular diagrams. Univ. of Oxford, England.
- ERLENMEYER, H. (1958). British Patent No. 794,775.
- HOLT, P. F. & OAKLAND, R. (1966). J. Chem. Soc. pp. 1306-1308. HÖKELEK, T., KILIÇ, E. & TÜZÜN, C. (1991). Acta Cryst. C47,
- 369-373.
- Hökelek, T., WATKIN, D. J., KILIÇ, E. & TÜZÜN, C. (1990). Acta Cryst. C46, 1027–1029.
- JAN, G. (1980). German Patent No. 2,939,259.
- LEARY, J. A., LAFLEUR, A. L., LIBER, H. L. & BLEMANN, K. (1983). Anal. Chem. 55, 758–761.
- MATTER, M. (1957). US Patent No. 2,778,829.
- MEER, H. VAN DER (1972). Acta Cryst. B28, 367-370.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- WATKIN, D. J., CARRUTHERS, J. R. & BETTERIDGE, D. W. (1985). CRYSTALS. Program for crystal structure solution. Univ. of Oxford, England.

Acta Cryst. (1991). C47, 376-378

Formation of Methyl 11-Hydroxy-8-oxopentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecanecarboxylate by a Regiospecific and Stereospecific Reduction

BY WILLIAM H. WATSON* AND RAM P. KASHYAP

Department of Chemistry, Texas Christian University, Forth Worth, Texas 76129, USA

AND ALAN P. MARCHAND* AND S. PULLA REDDY

Department of Chemistry, University of North Texas, PO Box 5068, Denton, Texas 76203, USA

(Received 19 January 1990; accepted 2 May 1990)

Abstract. Methyl 11-hydroxy-8-oxopentacyclo-[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecanecarboxylate (3), C₁₃H₁₄-O₄, $M_r = 234 \cdot 26$, triclinic, $P\overline{1}$, $a = 7 \cdot 291$ (1), b =7·441 (1), $c = 10 \cdot 414$ (1) Å, $\alpha = 104 \cdot 56$ (1), $\beta =$ 90·41 (1), $\gamma = 99 \cdot 07$ (1)°, $V = 539 \cdot 3$ (1) Å³, Z = 2, $D_x =$ $1 \cdot 442$ g cm⁻³, λ (Mo $K\alpha$) = 0·71073 Å, $\mu =$ 1·00 cm⁻¹, F(000) = 248, T = 295 K, $R = 0 \cdot 0487$ for 2138 reflections. Compound (3) contains four fivemembered rings and a four-membered ring fused to form an open-ended cage structure. The throughbond interaction of the π systems in the parent

0108-2701/91/020376-03\$03.00

diketone is absent in compound (3), which is reflected in the reduction of bond lengths. Although one C—C bond is 1.579 (2) Å, it has been shortened significantly. A hydrogen bond is formed between the hydroxyl group and the carbonyl O atom of the ester.

Introduction. In connection with an ongoing study of the synthesis and chemistry of novel substituted pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecanes (PCU's; Marchand, 1989), sodium borohydride reduction of compound (1) (Watson, Nagl, Marchand, Reddy & Reddy, 1989) has been investigated. Highly stereo-

© 1991 International Union of Crystallography

^{*} Authors to whom correspondence should be addressed.